

CDI Revision Notes

Term 1 (2017 – 2018)

Grade 11 General

Unit 1 – Materials and Unit 2 – Fundamentals of Electronics

STUDENT INSTRUCTIONS –	Examination Specifications			
Student must attempt all questions.	Domain	Marks	Time	
 For this examination, you must have: (a) An ink pen – blue. (b) A pencil. (c) A ruler. (d) A calculator (if required). Electronic devices are not allowed. 	Section 1 - 5 Multiple Choice Questions	5 Marks	3 - 4 minutes	
	Section 2 - 5 True or False Statements	5 Marks	3 - 4 minutes	
	Section 3 - 2 Short answer Questions 2 Diagram Questions 1 Matching Task	10 Marks (2 x 5) 20 Marks (2 x 10) 10 Marks	8 - 10 minutes 10 – 12 minutes 3 – 5 minutes	
		Total – 50 Marks	Total – 35 minutes (5 minutes reading)	

الإمارات العربية المتحدة وزارة التربيم

Examples of ferrous metals:

UNIT 1 - MATERIALS SECTION 3 – METALS AND TREATMENTS

Word	Meaning
Ferrous metal	These are the metals that contain some iron.
Non – ferrous metal	These are the metals that do not contain iron.

Ferrous	Non-Ferrous
Contain Iron	Do not contain iron
Magnetic	Non magnetic
Examples: cast iron, mild steel, stainless steel	 Examples: aluminium, copper, lead, zinc, gold and silver

IMAGE	NAME	COMPOSITION	PROPERTIES	USES
	Cast Iron	Iron + 3.5% carbon	Smooth skin with soft core, strong when compressed, self-lubricating, cannot be bent or forged.	Vices, lathe beds, garden bench ends, car brake drums, cooking pans etc.
	Mild Steel	Iron + 0.15 - 0.35% carbon	Ductile, malleable & tough, high tensile strength, poor resistance to corrosion, easily welded.	Car bodies, washing machine bodies, nuts & bolts, screws, nails, girders, etc.
20	High Carbon Steel (tool steel)	Iron + 0.8 - 1.5% carbon	Very hard, rather brittle, difficult to cut, poor resistance to corrosion.	Tool blades e.g. saws, chisels, screwdrivers, punches, knives, files, etc.
	High Speed Steel	Iron + tungsten chromium vanadium	Very hard, heat resistant, remains hard when red	Drills, lathe cutting tools, milling cutters, power hacksaw blades etc.
	Stainless Steel	Iron + chromium nickel magnesium	Tough and hard, corrosion resistant, wears well, difficult to cut, bend and file	Cutlery, sinks, teapots, dishes, saucepans etc.

الإمارات العربية المتحدة وزارة التربية والتعليم

IMAGE	NAME	COMPOSITION	PROPERTIES	USES
	Aluminium	pure metal	Good strength/ weight ratio, malleable and ductile, difficult to weld, non-toxic, resists corrosion. Conducts heat and electricity well. Polishes well.	Kitchen foil, saucepans, drinks cans, etc.
	Duralumin	Aluminium + manganese magnesium	Stronger than pure Aluminium, nearly as strong as mild steel but only one third the weight.	Greenhouses, window frames, aircraft bodies, etc.
	Copper	pure metal	Tough, ductile and malleable. Conducts heat and electricity well. Corrosion resistant, solders well. Polishes well.	Electrical wire, central heating pipes, circuit boards, saucepan bases
-	Brass	Copper + zinc	Quite hard, rigid, solders easily. Good conductor of heat and electricity. Polishes well.	Water taps, lamps, boat fittings, ornaments, door knockers.

Bronze	Copper + tin	Tough, strong, wears very well, good corrosion resistance.	Coins, wheel bearings, statues, boat fittings
Tin	pure metal	Weak and soft, malleable and ductile, excellent corrosion resistance, low melting point.	Solder (with lead), coating over mild steel (tin can).
Lead	pure metal	Soft, malleable, very heavy, corrosion resistant, low melting point, casts well, conducts electricity well.	Roof coverings, solder (with tin), car battery plates.

SECTION 4 – PLASTICS AND COMPOSITES

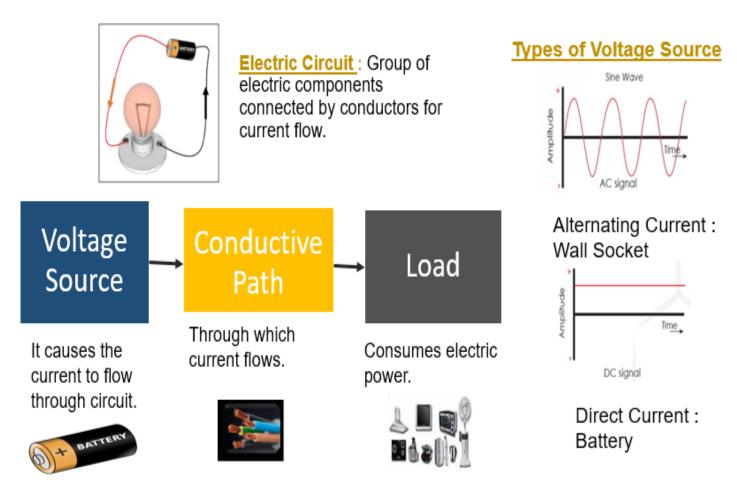
	Maguina		
Word	Meaning	Thermoplastics	Thermosetting Plastics
Thermosetting plastics	Plastics that <u>cannot be reshaped</u> by heating but can withstand higher temperatures.	Heated and can be reshaped.	Do not reshape with heat.
Thermoplastics	Plastics that can be <u>reshaped</u> by heating	Plastics become soft at a temperature lower than 100.	Withstand higher heat than thermoplastics.
Composite	A material that is made by combining two or more materials. They do not bind or merge together.	Plastic bottles.	Saucepan handles, electric socket.
		Carbon Fiber Re	inforced Plastic (CFRP)
		Most expensive composit	е.
	Glass Reinforced Plastic (GRP)	Best strength to weight ra	tio of any construction material
Known better	as fiberglass		
Composite m	ade from combining glass fibers and polyester resin	It is made from high tensi woven together and then	le strength carbon fibers which are incased in a plastic resin.
• Tough, rigid a	and lightweight	Resistant to stretching, rig	gid material, light in weight
Boat hulls, ca	ar body shells and canoes	Can withstand high tempe	eratures
		Formula One cars, racing	bikes and helicopter blades

الإمارات العربية المتحدة وزارة التربية والتعليم

UNIT 2 – FUNDAMENTAL OF ELECTRONICS SECTION 1 – ELECTRICAL CIRCUITS

Word	Meaning	Image
Electrical Circuit	A closed path for electrons to move through electrical components, connected by a conductive wire.	
Schematic Diagram	A graphical representation of an electrical circuit that uses symbols.	
Voltage	The charge difference between two points.	
Current	The rate at which electric charge flows through a certain point .	Current 🕂
Resistance	A material's tendency to resist (oppose) the flow of charge (current) .	Resistance
DC	An electric current that flows in one direction and has a constant voltage level; used in devices that use batteries or USB cables for power	V/I VDC IDC
AC	An electric current that periodically changes its direction; the voltage level also reverses with the current; used to deliver power to houses, office buildings, etc.	V/I +VAC +IAC
Battery	An electrical DC power source	

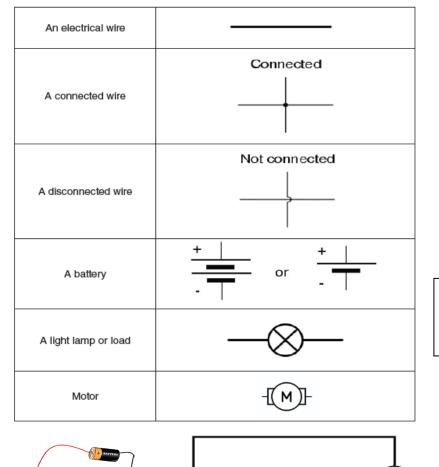
الإمارات العربية المتحدة وزارة التربية والتعليم

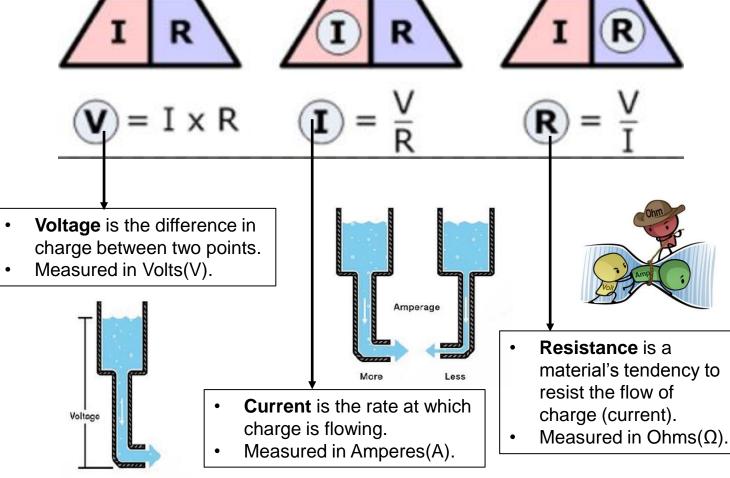

INTRODUCTION

We use electricity in our daily lives to power our electric devices. **For example** –

- Cars get electric power from batteries.
- Computers, televisions, air conditioners, cell phone chargers & electric wall sockets.

Electric current is the flow of electric charge carried by electrons. Electrons are very small particles within atoms. They carry electric energy and flow through defined paths known as **electric circuits**.

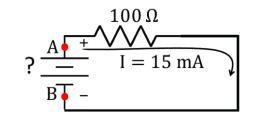

Electronics is described as the science of dealing with electricity. **For example** - An electronic appliance has more functions than a simple electrical device. An electronic kettle could maybe send an SMS to your phone, telling you that your water is ready. A simple electric kettle **ONLY** boils water.



الإمــارات العـربيـة المتحدة وزارة التـربيــة والتعليـــم

Ohm's Law

ELECTRICAL SCHEMATIC



الإمــارات العـربيـة المتحدة وزارة الـتـربيـــة والـتعليـــم

Problem 1:

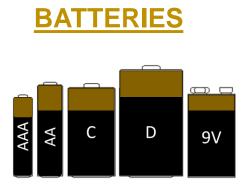
Using Ohm's Law, what is the **voltage difference** between point A and B if the **current** flowing through the resistor is **15 mA**, and the **resistance** is **100** Ω ?

Solution: V = I × R = 0.015 A × 100 Ω =1.5 V

Problem 2:

If the resistor in the previous example is replaced with another resistor, that has double the resistance, how much current would be flowing in the circuit using the same 1.5V battery as a voltage supply?

Solution:


V = 1.5 V, R = 2 × 100 Ω = 200 Ω V = I × R \rightarrow I = V / R = 1.5 V / 200 Ω = 0.0075 A = 7.5 mA

Problem 3:

Compare the value of the new current with the value of the initial current. Justify your answer.

Solution:

The new current is half the initial current (7.5 is half of 15). When the resistance was doubled, the current flowing became less (half the original current). This is because current is INVERSELY proportional to the resistance.

- A battery is a common DC power supply.
- A battery is made up of two plates. One plate is positively charged (+), the other plate is negatively charged (-).
- The plates are surrounded by a chemical solution called electrolyte.
- The electrical energy of a battery is made by converting the chemical energy of the battery. This happens when a chemical reaction between the plates and the electrolyte produces a voltage difference between the two plates.
- This makes the electrons flow and generates an electric current.
- The figure below shows some commonly used batteries that are available at the market. Each type has a different voltage.

الإمــارات العـربيـة المتحدة وزارة الـتـربيـــة والـتعليـــم

SIGNAL - For receiving and sending information

1. Analog Signals

- This signal has infinite number of values.
- Stored in continuous form between minimum and maximum value.

Examples

- Brightness of sun
- Room temperature
- Speaker
- Mixing colors
- Old radio
- Old photograph

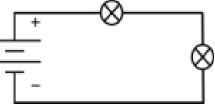
7 8 9 ÷ 4 5 6 × 1 2 3 • 0 • •

2. Digital Signals

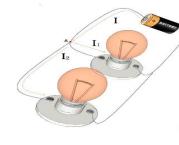
- These signals have a finite set of possible values(0V or 5V).
- Stored in coded form (0,1) (min., max.)

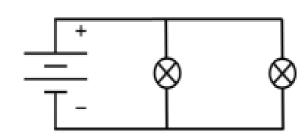
Examples

- Light switch in class room.
- Power button of phone.
- Game controller buttons
- Calculator screen
- Digital camera
- Digital music player



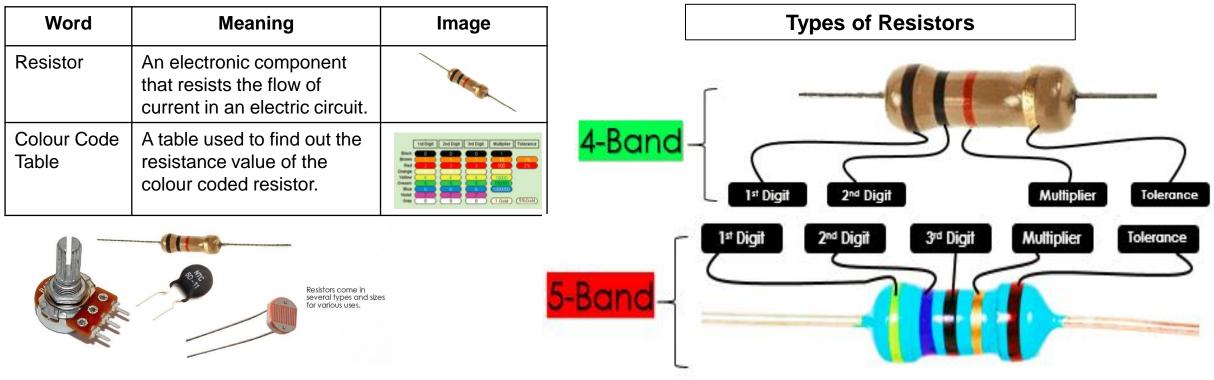
SERIES CIRCUITS


- Electric current flows in **ONE** defined path in series circuits.
- The current must flow through the wires, all the way through both light bulbs and back to the battery.



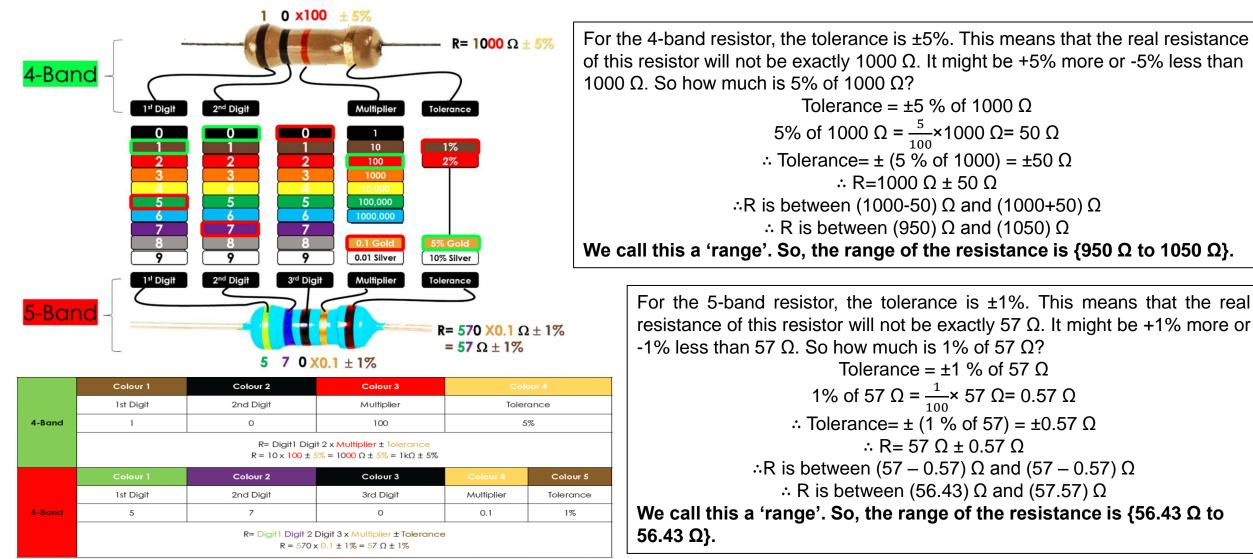
PARALLEL CIRCUITS

- In parallel circuits, electric current has more than one path.
- The components are connected to the same common points, this allows the current to be distributed over the paths.



الإمارات العربية المتحدة وزارة التربية والتعليم

SECTION 2 – RESISTORS


- Resistors are also used to divide voltages.
- The schematic symbol is shown below –

Tolerance is the maximum electrical or mechanical variations plus or minus in the specifications tolerated without affecting the operations of the device.

The resistance of a resistor

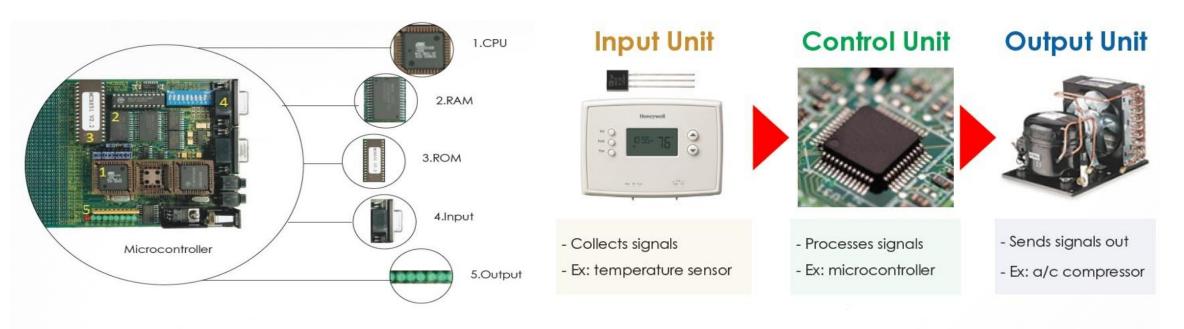
الإمارات العربية المتحدة وزارة التربية والتعليم

SECTION 3 – ELECTRONIC CALCULATIONS

Word	Meaning	Image	Breadboard	Multimeter
Breadboard	An electronic base used for building prototypes for electric circuits.		 There are three main components – (1) Nodes – electronic components are connected to the nodes. (2) Power Rails – It is used to supply the board with power. Interpolly theorem 	 It also checks the continuity in a circuit. The different values measured are - current (Amps – AC & DC) registered (Ohma)
Multimeter	An electronic device used for measuring different electrical values.		 board with power. Internally these nodes are connected vertically. (3) Terminal stripes – These are the horizontally connected nodes. They are marked with letters (columns) and numbers (rows) to help build the circuit properly. 	 resistance (Ohms) voltage (Volts – AC or DC) diode testing, capacitance (Farads), transistor testing, etc. It has two probes.

SECTION 4 – EMBEDDED SYSTEMS

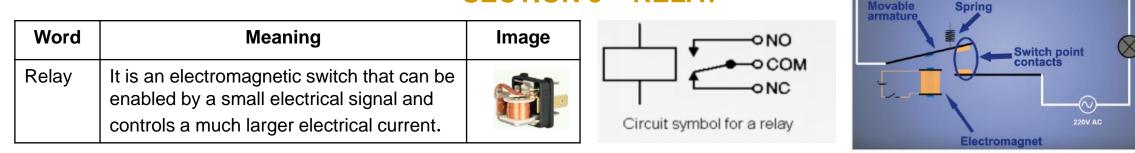
Word	Meaning
Embedded system	A computer system that has a specific function within a larger system.
Microcontroller	A minicomputer that fits on a single chip and controls a system.
Processing	A series of actions / steps that lead to a certain result.
Input	The information or data entered into a system.
Output	The information or data produced by a system based on the input information.



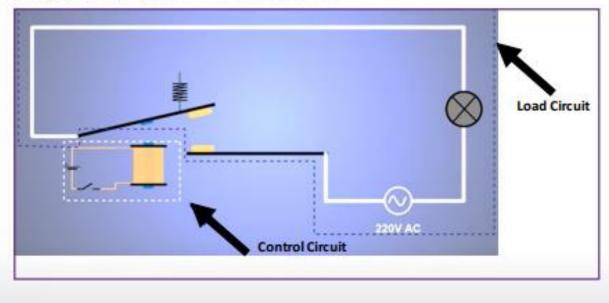
الإمارات العربية المتحدة وزارة التربيسة وزارة التربيسم

• <u>Embedded systems</u>: It is a specialized computer system with a specific function within a larger mechanical or electrical system. <u>Examples</u> include an air conditioner in car; a seatbelt warning in a car, a garden watering system & a motion sensitive security system.

- An "embedded system" is known as an <u>input</u>. It is a device that contains a <u>computer unit</u> or a <u>microcontroller</u> that reads the changes in an environment. It then controls an <u>output</u> system to change the environment.
- <u>Controller</u>: It is an electronic chip that works as a computer to manage the operation of electronic devices. It controls certain machines. It can be programmed to read input and controlling output. It has 3 main parts.



A controller has four main parts: central processing unit, random access memory, read only memory and I/O ports. When all these parts are connected on a single chip, you have a microcontroller. An embedded system has an input unit to collect data, a control unit to process the signal and an output unit to send signals out.



SECTION 5 – RELAY

- There are 2 main circuits in a relay system
 (a) Control Circuit
 (b) Load Circuit
- When power flows through the first circuit, it activates the electromagnet which generates a magnetic field. This magnetic field attracts the connector and activates the second circuit.
- Applications fridges, washing machines, dishwashers and AC controls.

Control circuit and load circuit of a relay

الإمارات العربية المتحدة وزارة التربية والتعليم

Solid State Relays

- Have no coil, spring, or mechanical contact switch.
- Much **faster** response time than electromagnetic relays.
- Made from **Semiconductor** materials.


Solid Stater Relays

Car Indicator Light

Relays are used for powering car turning signal lights and many other devices. These are called "flashers". It's a type of relay with three terminals and the body works as the earth, in old Japanese cars like old Toyotas.

Relay Applications

there is an electronic control turning on a motor.